VTK Callbacks
Command and Observer
1.Observer(观察者模式)
VTK交互器类
[vtkInteractorStyle](http://www.vtk.org/doc/release/5.10/html/classvtkInteractorStyle.html) | Provide event-driven interface to the rendering window (defines trackball mode) |
[vtkInteractorStyleAreaSelectHover](http://www.vtk.org/doc/release/5.10/html/classvtkInteractorStyleAreaSelectHover.html) | An interactor style for an area tree view |
[vtkInteractorStyleFlight](http://www.vtk.org/doc/release/5.10/html/classvtkInteractorStyleFlight.html) | Flight motion routines |
[vtkInteractorStyleImage](http://www.vtk.org/doc/release/5.10/html/classvtkInteractorStyleImage.html) | Interactive manipulation of the camera specialized for images |
[vtkInteractorStyleJoystickActor](http://www.vtk.org/doc/release/5.10/html/classvtkInteractorStyleJoystickActor.html) | Manipulate objects in the scene independently of one another |
[vtkInteractorStyleJoystickCamera](http://www.vtk.org/doc/release/5.10/html/classvtkInteractorStyleJoystickCamera.html) | Interactive manipulation of the camera |
[vtkInteractorStyleRubberBand2D](http://www.vtk.org/doc/release/5.10/html/classvtkInteractorStyleRubberBand2D.html) | A rubber band interactor for a 2D view |
[vtkInteractorStyleRubberBand3D](http://www.vtk.org/doc/release/5.10/html/classvtkInteractorStyleRubberBand3D.html) | A rubber band interactor for a 3D view |
[vtkInteractorStyleRubberBandPick](http://www.vtk.org/doc/release/5.10/html/classvtkInteractorStyleRubberBandPick.html) | Like TrackBallCamera, but this can pick props underneath a rubber band selection rectangle |
[vtkInteractorStyleRubberBandZoom](http://www.vtk.org/doc/release/5.10/html/classvtkInteractorStyleRubberBandZoom.html) | Zoom in by amount indicated by rubber band box |
[vtkInteractorStyleSwitch](http://www.vtk.org/doc/release/5.10/html/classvtkInteractorStyleSwitch.html) | Class to swap between interactory styles |
[vtkInteractorStyleTerrain](http://www.vtk.org/doc/release/5.10/html/classvtkInteractorStyleTerrain.html) | Manipulate camera in scene with natural view up (e.g., terrain) |
[vtkInteractorStyleTrackball](http://www.vtk.org/doc/release/5.10/html/classvtkInteractorStyleTrackball.html) | Trackball motion control |
[vtkInteractorStyleTrackballActor](http://www.vtk.org/doc/release/5.10/html/classvtkInteractorStyleTrackballActor.html) | Manipulate objects in the scene independent of each other |
[vtkInteractorStyleTrackballCamera](http://www.vtk.org/doc/release/5.10/html/classvtkInteractorStyleTrackballCamera.html) | Interactive manipulation of the camera |
[vtkInteractorStyleTreeMapHover](http://www.vtk.org/doc/release/5.10/html/classvtkInteractorStyleTreeMapHover.html) | An interactor style for a tree map view |
[vtkInteractorStyleUnicam](http://www.vtk.org/doc/release/5.10/html/classvtkInteractorStyleUnicam.html) | Unicam navigation style |
[vtkInteractorStyleUser](http://www.vtk.org/doc/release/5.10/html/classvtkInteractorStyleUser.html) | Customizable interaction routines |
机器学习经典书籍
入门书单
- 《数学之美》 PDF作者吴军大家都很熟悉。以极为通俗的语言讲述了数学在机器学习和自然语言处理等领域的应用。
- 《Programming Collective Intelligence》(《集体智慧编程》)PDF作者Toby Segaran也是《BeautifulData : The Stories Behind Elegant Data Solutions》(《数据之美:解密优雅数据解决方案背后的故事》)的作者。这本书最大的优势就是里面没有理论推导和复杂的数学公式,是很不错的入门书。目前中文版已经脱销,对于有志于这个领域的人来说,英文的pdf是个不错的选择,因为后面有很多经典书的翻译都较差,只能看英文版,不如从这个入手。还有,这本书适合于快速看完,因为据评论,看完一些经典的带有数学推导的书后会发现这本书什么都没讲,只是举了很多例子而已。
- 《Algorithms of the Intelligent Web》(《智能web算法》)PDF作者Haralambos Marmanis、Dmitry Babenko。这本书中的公式比《集体智慧编程》要略多一点,里面的例子多是互联网上的应用,看名字就知道。不足的地方在于里面的配套代码是BeanShell而不是python或其他。总起来说,这本书还是适合初学者,与上一本一样需要快速读完,如果读完上一本的话,这一本可以不必细看代码,了解算法主要思想就行了。
- 《统计学习方法》 PDF作者李航,是国内机器学习领域的几个大家之一,曾在MSRA任高级研究员,现在华为诺亚方舟实验室。书中写了十个算法,每个算法的介绍都很干脆,直接上公式,是彻头彻尾的“干货书”。每章末尾的参考文献也方便了想深入理解算法的童鞋直接查到经典论文;本书可以与上面两本书互为辅助阅读。
- 《Machine Learning》(《机器学习》) PDF作者Tom Mitchell是CMU的大师,有机器学习和半监督学习的网络课程视频。这本书是领域内翻译的较好的书籍,讲述的算法也比《统计学习方法》的范围要大很多。据评论这本书主要在于启发,讲述公式为什么成立而不是推导;不足的地方在于出版年限较早,时效性不如PRML。但有些基础的经典还是不会过时的,所以这本书现在几乎是机器学习的必读书目。
- 《Mining of Massive Datasets》(《大数据》) PDF作者Anand Rajaraman[3]、Jeffrey David Ullman,Anand是Stanford的PhD。这本书介绍了很多算法,也介绍了这些算法在数据规模比较大的时候的变形。但是限于篇幅,每种算法都没有展开讲的感觉,如果想深入了解需要查其他的资料,不过这样的话对算法进行了解也足够了。还有一点不足的地方就是本书原文和翻译都有许多错误,勘误表比较长,读者要用心了。
- 《Data Mining: Practical Machine Learning Tools and Techniques》(《数据挖掘:实用机器学习技术》) PDF作者Ian H. Witten 、Eibe Frank是weka的作者、新西兰怀卡托大学教授。他们的《ManagingGigabytes》[4]也是信息检索方面的经典书籍。这本书最大的特点是对weka的使用进行了介绍,但是其理论部分太单薄,作为入门书籍还可,但是,经典的入门书籍如《集体智慧编程》、《智能web算法》已经很经典,学习的话不宜读太多的入门书籍,建议只看一些上述两本书没讲到的算法。
- 《机器学习及其应用》周志华、杨强主编。来源于“机器学习及其应用研讨会”的文集。该研讨会由复旦大学智能信息处理实验室发起,目前已举办了十届,国内的大牛如李航、项亮、王海峰、刘铁岩、余凯等都曾在该会议上做过讲座。这本书讲了很多机器学习前沿的具体的应用,需要有基础的才能看懂。如果想了解机器学习研究趋势的可以浏览一下这本书。关注领域内的学术会议是发现研究趋势的方法嘛。
- 《Managing Gigabytes》(深入搜索引擎)PDF信息检索不错的书。
- 《Modern Information Retrieval》 PDFRicardo Baeza-Yates et al. 1999。貌似第一本完整讲述IR的书。可惜IR这些年进展迅猛,这本书略有些过时了。翻翻做参考还是不错的。另外,Ricardo同学现在是Yahoo Research for Europe and Latin Ameria的头头。
- 《推荐系统实践》 PDF项亮,不错的入门读物
深入
- 《Pattern Classification》(《模式分类》第二版) PDF作者Richard O. Duda[5]、Peter E. Hart、David。模式识别的奠基之作,但对最近呈主导地位的较好的方法SVM、Boosting方法没有介绍,被评“挂一漏万之嫌”。
- 《Pattern Recognition And Machine Learning》 PDF作者Christopher M. Bishop[6];简称PRML,侧重于概率模型,是贝叶斯方法的扛鼎之作,据评“具有强烈的工程气息,可以配合stanford 大学 Andrew Ng 教授的 Machine Learning 视频教程一起来学,效果翻倍。”
- 《The Elements of Statistical Learning : Data Mining, Inference, andPrediction》,(《统计学习基础:数据挖掘、推理与预测》第二版) PDF作者RobertTibshirani、Trevor Hastie、Jerome Friedman。“这本书的作者是Boosting方法最活跃的几个研究人员,发明的Gradient Boosting提出了理解Boosting方法的新角度,极大扩展了Boosting方法的应用范围。这本书对当前最为流行的方法有比较全面深入的介绍,对工程人员参考价值也许要更大一点。另一方面,它不仅总结了已经成熟了的一些技术,而且对尚在发展中的一些议题也有简明扼要的论述。让读者充分体会到机器学习是一个仍然非常活跃的研究领域,应该会让学术研究人员也有常读常新的感受。”[7]
- 《Data Mining:Concepts andTechniques》(《数据挖掘:概念与技术》第三版) PDF作者(美)Jiawei Han[8]、(加)Micheline Kamber、(加)Jian Pei,其中第一作者是华裔。本书毫无疑问是数据挖掘方面的的经典之作,不过翻译版总是被喷,没办法,大部分翻译过来的书籍都被喷,想要不吃别人嚼过的东西,就好好学习英文吧。
- 《AI, Modern Approach 2nd》 PDFPeter Norvig,无争议的领域经典。
- 《Foundations of Statistical Natural Language Processing》 PDF自然语言处理领域公认经典。
- 《Information Theory:Inference and Learning Algorithms》 PDF
- 《Statistical Learning Theory》 PDFVapnik的大作,统计学界的权威,本书将理论上升到了哲学层面,他的另一本书《The Nature ofStatistical Learning Theory》也是统计学习研究不可多得的好书,但是这两本书都比较深入,适合有一定基础的读者。
数学基础
- 《矩阵分析》 PDFRoger Horn。矩阵分析领域无争议的经典
- 《概率论及其应用》 PDF威廉·费勒。极牛的书,可数学味道太重,不适合做机器学习的
- 《All Of Statistics》 PDF 扫描版 PDF 高清版机器学习这个方向,统计学也一样非常重要。推荐All of statistics,这是CMU的一本很简洁的教科书,注重概念,简化计算,简化与Machine Learning无关的概念和统计内容,可以说是很好的快速入门材料。
- 《Nonlinear Programming, 2nd》 PDF最优化方法,非线性规划的参考书。
- 《Convex Optimization》 PDF 配套代码Boyd的经典书籍,被引用次数超过14000次,面向实际应用,并且有配套代码,是一本不可多得的好书。
- 《Numerical Optimization》 PDF第二版,Nocedal著,非常适合非数值专业的学生和工程师参考,算法流程清晰详细,原理清楚。
- 《Introduction to Mathematical Statistics》 PDF第六版,Hogg著,本书介绍了概率统计的基本概念以及各种分布,以及ML,Bayesian方法等内容。
- 《An Introduction to Probabilistic Graphical Models》 PDFJordan著,本书介绍了条件独立、分解、混合、条件混合等图模型中的基本概念,对隐变量(潜在变量)也做了详细介绍,相信大家在隐马尔科夫链和用Gaussian混合模型来实现EM算法时遇到过这个概念。
- 《Probabilistic Graphical Models-Principles and Techniques》 PDFKoller著,一本很厚很全面的书,理论性很强,可以作为参考书使用。
- 具体数学 PDF经典
机器学习经典论文/survey合集
Active Learning
- Two Faces of Active Learning, Dasgupta, 2011
Active Learning Literature Survey, Settles, 2010
ApplicationsA Survey of Emerging Approaches to Spam Filtering, Caruana, 2012
- Ambient Intelligence: A Survey, Sadri, 2011
- A Survey of Online Failure Prediction Methods, Salfner, 2010
- Anomaly Detection: A Survey, Chandola, 2009
- Mining Data Streams: A Review, Gaber, 2005
Workflow Mining: A Survey of Issues and Approaches, Aalst, 2003
BiologySupport Vector Machines in Bioinformatics: a Survey, Chicco, 2012
- Computational Epigenetics: The New Scientific Paradigm , Lim, 2010
- Automated Protein Structure Classification: A Survey, Hassanzadeh, 2009
- Chemoinformatics - An Introduction for Computer Scientists, Brown, 2009
- Computational Challenges in Systems Biology, Heath, 2009
- Computational Epigenetics , Bock, 2008
- Progress and Challenges in Protein Structure Prediction, Zhang, 2008
- A Review of Feature Selection in Bioinformatics, Saeys, 2007
- Machine Learning in Bioinformatics: A Brief Survey and Recommendations for Practitioners, Bhaskar, 2006
- Bioinformatics - An Introduction for Computer Scientists, Cohen, 2004
- Computational Systems Biology, Kitano, 2002
- Protein Structure Prediction and Structural Genomics, Baker, 2001
- Recent Developments and Future Directions in Computational Genomics, Tsoka, 2000
Molecular Biology for Computer Scientists, Hunter, 1993
ClassificationSupervised Machine Learning: A Review of Classification Techniques, Kotsiantis, 2007
ClusteringXML Data Clustering: An Overview, Algergawy, 2011
- Data Clustering: 50 Years Beyond K-Means, Jain, 2010
- Clustering Stability: An Overview, Luxburg, 2010
- Parallel Clustering Algorithms: A Survey, Kim, 2009
- A Survey: Clustering Ensembles Techniques, Ghaemi, 2009
- A Tutorial on Spectral Clustering, Luxburg, 2007
- Survey of Clustering Data Mining Techniques, Berkhin, 2006
- Survey of Clustering Algorithms, Xu, 2005
- Clustering of Time Series Data - A Survey, Liao, 2005
- Clustering Methods, Rokach, 2005
- Recent Advances in Clustering: A Brief Survey, Kotsiantis, 2004
- Subspace Clustering for High Dimensional Data: A Review, Parsons, 2004
- Unsupervised and Semi-supervised Clustering: a Brief Survey, Grira, 2004
- Clustering in Life Sciences, Zhao, 2002
- On Clustering Validation Techniques, Halkidi, 2001
- Data Clustering: A Review, Jain, 1999
A Survey of Fuzzy Clustering, Yang, 1993
Computer VisionPedestrian Detection: An Evaluation of the State of the Art, Dollar, 2012
- A Comparative Study of Palmprint Recognition Algorithms, Zhang, 2012
- Human Activity Analysis: A Review, Aggarwal, 2011
- Subspace Methods for Face Recognition, Rao, 2010
- Context Based Object Categorization: A Critical Survey, Galleguillos, 2010
- Object tracking: A Survey, Yilmaz, 2006
Detecting Faces in Images: A Survey, Yang, 2002
DatabasesData Fusion, Bleiholder, 2008
- Duplicate Record Detection: A Survey, Elmagarmid, 2007
- Overview of Record Linkage and Current Research Directions, Winkler, 2006
A Survey of Schema-based Matching Approaches, Shvaiko, 2005
Deep LearningRepresentation Learning: A Review and New Perspectives, Bengio, 2012
Dimension ReductionDimensionality Reduction: A Comparative Review, Maaten, 2009
- Dimension Reduction: A Guided Tour, Burges, 2009
- A Survey of Manifold-Based Learning Methods, Huo, 2007
- Toward Integrating Feature Selection Algorithms for Classification and Clustering, Liu, 2005
- An Introduction to Variable and Feature Selection, Guyon, 2003
A Survey of Dimension Reduction Techniques, Fodor, 2002
EconomicsAuctions and Bidding: A Guide for Computer Scientists, Parsons, 2011
- Computational Sustainability, Gomes, 2009
Computational Finance, Tsang, 2004
Game TheoryComputer Poker: A Review, Rubin, 2011
Graphical ModelsAn Introduction to Variational Methods for Graphical Models, Jordan, 1999
Kernel MethodsKernels for Vector-Valued Functions: a Review, Alvarez, 2012
Learning TheoryIntroduction to Statistical Learning Theory, Bousquet, 2004
Machine LearningA Few Useful Things to Know about Machine Learning, Domingos, 2012
- A Tutorial on Bayesian Nonparametric Models, Blei, 2011
- Decision Forests for Classification, Regression, Density Estimation, Manifold Learning and Semi-Supervised Learning, Criminisi, 2011
- Top 10 Algorithms in Data Mining, Wu, 2008
- Semi-Supervised Learning Literature Survey, Zhu, 2007
- Interestingness Measures for Data Mining: A Survey, Geng, 2006
- A Survey of Interestingness Measures for Knowledge Discovery, McGarry, 2005
- A Tutorial on the Cross-Entropy Method, Boer, 2005
- A Survey of Kernels for Structured Data, Gartner, 2003
- Survey on Frequent Pattern Mining, Goethals, 2003
- The Boosting Approach to Machine Learning: An Overview, Schapire, 2003
A Survey on Wavelet Applications in Data Mining, Li, 2002
MathematicsTopology and Data, Carlsson, 2009
Multi-armed BanditRegret Analysis of Stochastic and Nonstochastic Multi-armed Bandit Problems, Bubeck, 2012
Natural ComputingReservoir Computing Approaches to Recurrent Neural Network Training, Jaeger, 2009
- Artificial Immune Systems, Aickelin, 2005
- A Survey of Evolutionary Algorithms for Data Mining and Knowledge Discovery, Freitasï¾ , 2003
- Data Mining in Soft Computing Framework: A Survey, Mitra, 2002
Neural Networks for Classification: A Survey, Zhang, 2000
Natural Language ProcessingProbabilistic Topic Models, Blei, 2012
- Ontology Learning From Text: A Look Back And Into The Future, Wong, 2012
- Machine Transliteration Survey, Karimi, 2011
- Translation Techniques in Cross-Language Information Retrieval, Zhou, 2011
- Comprehensive Review of Opinion Summarization, Kim, 2011
- A Survey on Sentiment Detection of Reviews, Tang, 2009
- Word Sense Desambiguation: A Survey, Navigli, 2009
- Topic Models, Blei, 2009
- Opinion Mining and Sentiment Analysis, Pang, 2008
- Information Extraction, Sarawagi, 2008
- Statistical Machine Translation, Lopez, 2008
- A Survey of Named Entity Recognition and Classification, Nadeau, 2007
- Adaptive Information Extraction, Turmo, 2006
- Survey of Text Clustering, Jing, 2005
- Machine Learning in Automated Text Categorization, Sebastiani, 2002
Web Mining Research: A Survey, Kosala, 2000
NetworksCommunity Detection in Graphs, Fortunato, 2010
- A Survey of Statistical Network Models, Goldenberg, 2010
- Communities in Networks, Porter, 2009
- Graph Clustering, Schaeffer, 2007
- Graph Mining: Laws, Generators, and Algorithms, Chakrabarti, 2006
- Comparing Community Structure Identification, Danon, 2005
- Link Mining: A Survey, Getoor, 2005
- Detecting Community Structure in Networks, Newman, 2004
Link Mining: A New Data Mining Challenge, Getoor, 2003
On-Line LearningOn-Line Algorithms in Machine Learning, Blum, 1998
OthersA Survey of Very Large-Scale Neighborhood Search Techniques, Ahuja, 2001
Planning and SchedulingA Review of Machine Learning for Automated Planning, Jimenez, 2009
ProbabilisticApproximate Policy Iteration: A Survey and Some New Methods, Bertsekas, 2011
An Introduction to MCMC for Machine Learning, Andrieu, 2003
Probabilistic ModelsAn Introduction to Conditional Random Fields, Sutton, 2010
Randomized AlgorithmsRandomized Algorithms for Matrices and Data, Mahoney, 2011
Recommender SystemsRecent advances in Personalized Recommender Systems, Liu, 2009
- Matrix Factorization Techniques for Recommender Systems, Koren, 2009
A Survey of Collaborative Filtering Techniques, Su, 2009
RegressionEnsemble Approaches for Regression: a Survey, Moreira, 2012
Reinforcement LearningA Survey of Reinforcement Learning in Relational Domains, Otterlo, 2005
Reinforcement Learning: A Survey, Kaelbling, 1996
Rule LearningAssociation Mining, Ceglar, 2006
Algorithms for Association Rule Mining - A General Survey and Comparison, Hipp, 2000
TestingControlled Experiments on the Web: Survey and Practical Guide, Kohavi, 2009
Time SeriesTime-Series Data Mining, Esling, 2012
- A Review on Time Series Data Mining, Fu, 2011
Discrete Wavelet Transform-Based Time Series Analysis and Mining, Chaovalit, 2011
Transfer LearningA Survey on Transfer Learning, Pan, 2010
Web MiningA Taxonomy of Sequential Pattern Mining Algorithms, Mabroukeh, 2010
- A Survey of Web Clustering Engines, Carpineto, 2009
- Web Page Classification: Features and Algorithms, Qi, 2009
- Mining Interesting Knowledge from Weblogs: A Survey, Facca, 2005
- An Overview of Web Data Clustering Practices, Vakali, 2005
- A Survey of Web Metrics, Dhyani, 2002
- Data Mining for Hypertext: A Tutorial Survey, Chakrabarti, 2000
http://www.mlsurveys.com/
2014计划(想到再加)
1.2. 更多阅读;
- 练习长跑;
- 学习摄影;
- 增加社交;
- 走更多的路;
- 打上主力;
- 坚持写博客;
- 学习DL;
- 贡献代码;
- 学习公开课;
【转】C++模板”>>”编译问题与词法消歧设计
在编译理论中,通常将编译过程抽象为5个主要阶段:词法分析(Lexical Analysis),语法分析(Parsing),语义分析(Semantic Analysis),优化(Optimization),代码生成(Code Generation)。这5个阶段类似Unix管道模型,上一个阶段的输出作为下一个阶段的输入。其中,词法分析是根据输入源代码文本流,分割出词,识别类别,产生词法元素(Token)流,如:
1 |
`int` `a = 10;`
|
1 |
`map<``int``, vector<``int``>>`
|
1 |
`map<``int``, vector<``int``> >`
|
1
2
3
4
5 |
`template``<``int` `N>`
`class` `Foo {`
`};`
`Foo<3>>1> foo;`
|
1 |
`Foo<(3>>1)> foo;`
|
ITK无法生成IO对象问题
当使用VS生成项目时,读取图像时容易出现ImageFileReaderException的问题。
</header>